Campbell Biology

Source: Urry, Lisa A.. Campbell Biology (p. 229). Pearson Education. Kindle Edition.
When signaling pathways were first discovered, they were thought to be linear, independent pathways. Our understanding of cellular communication has benefited from the realization that signaling pathway components interact with each other in various ways. For a cell to carry out the appropriate response, cellular proteins often must integrate multiple signals. Let’s consider an important cellular process—cellular suicide—as an example.
Cells that are infected, are damaged, or have reached the end of their functional life span often undergo “programmed cell death.” The best-understood type of this controlled cell suicide is apoptosis (from the Greek, meaning “falling off,” and used in a classic Greek poem to refer to leaves falling from a tree). During this process, cellular agents chop up the DNA and fragment the organelles and other cytoplasmic components. The cell shrinks and becomes lobed (a change called “blebbing”), and the cell’s parts are packaged up in vesicles that are engulfed and digested by specialized scavenger cells, leaving no trace. Apoptosis protects neighboring cells from damage that they would otherwise suffer if a dying cell merely leaked out all its contents, including its many digestive enzymes.
The signal that triggers apoptosis can come from either outside or inside the cell. Outside the cell, signaling molecules released from other cells can initiate a signal transduction pathway that activates the genes and proteins responsible for carrying out cell death. Within a cell whose DNA has been irretrievably damaged, a series of protein-protein interactions can pass along a signal that similarly triggers cell death. Considering some examples of apoptosis can help us to see how signaling pathways are integrated in cells.
Source:
Urry, Lisa A.. Campbell Biology (p. 229). Pearson Education. Kindle Edition.